Blackwell Consulting PO Box 2879 Corrales, NM 87048 bblackwell13@comcast.net 505-897-5090 fax: 505-890-4992

A Technique for Uncertainty Analysis for Inverse Heat Conduction Problems

Ben Blackwell, Blackwell Consulting Jim Beck, Michigan State University

Presented at 2009 Inverse Problems Symposium (www.inverseproblems2009.org) May 31-June 2, 2009 Michigan State University East Lansing, MI 48824

Introduction

- Inverse Heat Conduction Problem (IHCP) is determination of heat flux from interior temperature measurements (not necessary for this group)
- In today's environment, it is not adequate to just run your favorite IHCP algorithm and report the results
- Instead, we need to be concerned with the uncertainty in the reported results
- Ingredients of IHCP solution are:
 - Computational model with uncertain input parameters
 - Experimental temperature data with measurement uncertainty
- Question we will address is the determination of the uncertainty in the estimated heat flux, given the uncertainty in input parameters and experimental temperature measurements

Outline of Talk

- Math model
- IHCP algorithm description (brief)
- Propagation of variance equation
- Filter coefficient form of IHCP algorithm
- Parameter importance factors
- Example calculations
- Thoughts on extending analysis to nonlinear problem of temperature dependent properties
- Summary
- Acknowledgements

Math Model

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right)$$
$$-k \frac{\partial T}{\partial x} \Big|_{x=0} = q(t)$$
$$-k \frac{\partial T}{\partial x} \Big|_{x=L} = q_b(t) \text{ or } T(L, t) = T_b$$
$$T(x, 0) = T_i(x)$$

- We assumed constant thermal properties k and ρc and they have uncertainty associated with them
- Temperature measurements $T(x_j, t_j) = Y_{j,i}$ have uncertainty

ips_2009_bfb_jvb.fm

IHCP Algorithm Description

• Algorithm will minimize sum of squares function

$$S = \sum_{i=1}^{r} \sum_{j=1}^{J} (Y_{j,M+i-1} - T_{j,M+i-1})^{2}$$

• We selected the Duhamel's theorem based function specification method given in Beck, Blackwell and St. Clair Jr.

$$r \quad J$$

$$\sum_{i=1}^{r} \sum_{j=1}^{J} (Y_{j,M+i-1} - \hat{T}_{j,M+i-1})\phi_{j,i}$$

$$q_{M} = \underbrace{i=1}_{j=1}^{r} \int_{i=1}^{J} \phi^{2}_{j,i}$$

$$\sum_{i=1}^{r} \sum_{j=1}^{J} \phi^{2}_{j,i}$$

$$\hat{T}_{j,M+i-1}\Big|_{q_{m}} = q_{M+1} = \dots = q_{M+r-1} = 0 = T_{o} + \sum_{n=1}^{M-1} q_{n} \Delta \phi_{M-n+r-1}$$

$$\Delta \phi_{i} = \phi_{i+1} - \phi_{i}$$

ips_2009_bfb_jvb.fm

IHCP Algorithm (con't)

• Sensitivity coefficients $\phi = \partial T / \partial q$ are computed from (p. 14 Beck, Black-well, St. Clair Jr.)

$$\frac{T-T_o}{q_c L/k} = \frac{\alpha t}{L^2} + \frac{1}{3} - \frac{x}{L} + \frac{1}{2} \left(\frac{x}{L}\right)^2 - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n^2 \pi^2 \frac{\alpha t}{L^2}\right) \cos\left(n\pi \frac{x}{L}\right), \alpha = k/C$$

• In this instance,

$$\phi(x,t) = \frac{L}{k} \left[\frac{\alpha t}{L^2} + \frac{1}{3} - \frac{x}{L} + \frac{1}{2} \left(\frac{x}{L} \right)^2 - \frac{2}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \exp\left(-n^2 \pi^2 \frac{\alpha t}{L^2} \right) \cos\left(n \pi \frac{x}{L} \right) \right]$$

- $\phi(x, t)$ can be computed for other geometries (e.g. cylindrical or spherical)
- Fully numerical procedures such as finite difference, finite element or finite volume could be used
- Above analytical equation for planar geometry was used for this work

Propagation of Variance Equations

 Functional dependence of data reduction equation (properties and temperature measurements)

$$q_{M} = q_{M} \left(k, \rho c, Y_{o}, \underbrace{Y_{1, 1}, Y_{1, 2}, \dots, Y_{1, M+r-1}}_{M+r-1}, \underbrace{Y_{2, 1}, Y_{2, 1}, \dots, Y_{2, M+r-1}}_{M+r-1} \dots\right)$$

Uncertainty propagation equation

$$\sigma^{2} q_{M} = \left(\frac{\partial q_{M}}{\partial k}\sigma_{k}\right)^{2} + \left(\frac{\partial q_{M}}{\partial \rho c}\sigma_{\rho c}\right)^{2} + \left(\frac{\partial q_{M}}{\partial Y_{o}}\sigma_{Y_{o}}\right)^{2} + \sum_{\substack{j=1\\j=1}}^{J}\sum_{\substack{i=1\\j=1}}^{M+r-1} \left(\frac{\partial q_{M}}{\partial Y_{j,i}}\sigma_{Y_{j,i}}\right)^{2}$$

- Data reduction equation (IHCP algorithm) is used to compute sensitivity coefficients in uncertainty propagation equation
 - This differentiation for sensitivity of the estimated heat flux with respect to the individual measurements is easier if the filter coefficient form of the IHCP algorithm is used

Filter Coefficient form of IHCP

• From page 148 of Beck, Blackwell and St. Clair Jr,

$$q_{M} = \sum_{j=1}^{J} \sum_{n=1}^{M+r-1} g_{j,n}(Y_{j,M-n+r} - Y_{o}) = \sum_{j=1}^{J} \sum_{i=1}^{M+r-1} g_{j,M+r-i}(Y_{j,i} - Y_{o})$$

• Measurement sensitivity coefficients are

$$\frac{\partial q_M}{\partial Y_{j,i}} = g_{j,M+r-i}$$

$$\frac{\partial q_M}{\partial Y_o} = -\sum_{j=1}^{J} \sum_{n=1}^{M+r-1} g_{j,n} = -\sum_{j=1}^{J} \sum_{i=1}^{M+r-i} g_{j,M+r-i}$$

• For adiabatic back boundary condition

$$\int M + r - 1$$

$$\lim_{M \to \infty} \sum_{j=1}^{\infty} \sum_{n=1}^{\infty} g_{j,n} = 0$$

• For sufficiently large *M*, error in *Y*_o becomes unimportant

Sensitivity Coefficients for Thermal Properties

• Second order central differences were used for $\partial q_M / \partial k$ and $\partial q_M / \partial C$

$$\frac{\partial q_M}{\partial k} = \frac{q_M(k + \Delta k, \rho c, Y_o, Y_{1, 1}, Y_{1, 2}, \dots) - q_M(k - \Delta k, \rho c, Y_o, Y_{1, 1}, Y_{1, 2}, \dots)}{2\Delta k}$$

We prefer to work with scaled sensitivity coefficients

$$k\frac{\partial q_{M}}{\partial k} = \frac{q_{M}(k(1+\delta), \rho c, Y_{o}, Y_{1, 1}, Y_{1, 2}, ...) - q_{M}(k(1-\delta), \rho c, Y_{o}, Y_{1, 1}, Y_{1, 2}, ...)}{2\delta}$$
$$\delta = \frac{\Delta k}{k} = \frac{\Delta C}{C} \text{ with } 10^{-6} < \delta < 10^{-3}$$

• Similar finite difference equations were used for $C \partial q_M / \partial C$

Parameter Importance Factors

- How do we assign a relative importance to various parameters when uncertainty is present?
- Divide propagation of variance equation through by $\sigma^2_{q_M}$

$$1 = \frac{1}{\sigma^{2} q_{M}} \left(k \frac{\partial q_{M}}{\partial k} \frac{\sigma_{k}}{k} \right)^{2} + \frac{1}{\sigma^{2} q_{M}} \left(\rho c \frac{\partial q_{M}}{\partial \rho c} \frac{\sigma_{\rho c}}{\rho c} \right)^{2} + \frac{1}{\sigma^{2} q_{M}} \left(\Delta T \frac{\sigma_{Y_{o}}}{\Delta T} \sum_{j=1}^{J} \sum_{n=1}^{M+r-1} g_{j,n} \right)^{2} + \frac{1}{\sigma^{2} q_{M}} \left(\sum_{j=1}^{J} \sum_{i=1}^{M+r-1} \left(\Delta T g_{j,M+r-i} \frac{\sigma_{Y_{i,i}}}{\Delta T} \right) \right)^{2}$$

 Terms on right hand side are importance factors for k, ρc, Y_o and all other measured temperatures respectively

Algorithm for Computing Filter Coefficients

- Non filter coefficient form of IHCP algorithm is used to compute filter coefficients
- For *N* measurement times, we need *N* filter coefficients for each sensor location
- Since filter coefficients decrease to zero for large *N*, fewer than *N* filter coefficients may be adequate
- Steps are as follows:
- 1. For sensor *j*, set measurement vector $Y_{j,i} = 0$, *i*=1,...,*N* except for $Y_{j,r} = 1$
- 2. Apply non filter form of IHCP algorithm to compute sequence of heat fluxes q_M , M = 1, 2, ..., N
- 3. For sensor *j*, the filter coefficients are $g_{j,i} = q_i$, i = 1, 2, ..., N
- 4. Repeat steps 1-3 for each additional value of *j*

Example Calculation

- Representative of laser interaction with stainless steel plate
- Analytical solution used to generate "data" with random noise added
- Problem parameters are:

L = 0.0015 m k = 18 W/m-k $\alpha = 4.39 \text{ x} 10^{-6} \text{ m}^2/\text{s}$ $q_c = 3.54 \text{ x} 10^6 \text{ W/m}^2$ $\Delta t = 0.1 \text{ s}$ $\sigma_k/k = 0.1$ $\sigma_C/C = 0.05 (C = \rho c)$ $\sigma_Y = 5 \text{ K}$

ips_2009_bfb_jvb.fm

Back Face Temperature Data (with noise)

Estimated Heat Flux with Uncertainty Bars(r = 5)

ips_2009_bfb_jvb.fm

Importance Factors

Blackwell Consulting

ips_2009_bfb_jvb.fm

Property Sensitivity Coefficients

Blackwell Consulting

ips_2009_bfb_jvb.fm

Functions of Filter Coefficients

Thoughts on Extension to Non Linear Problems

- Filter form of IHCP algorithm is restricted to constant properties
- Professor Beck has introduced an approximate technique of evaluating the properties at an average plate temperature and computing corresponding filter coefficients
- This produces a set of filter coefficients that are temperature dependent
- For the example presented here, temperature drop across plate is small in comparison to temperature level
- This would allow one to interpolate in temperature for appropriate set of temperature dependent filter coefficients

Summary

- Filter coefficient form of IHCP was implemented along with uncertainty in estimated heat flux due to uncertainties in thermal properties and temperature measurements
- Importance factors were introduced and the volumetric heat capacity was the dominant contributor to the overall uncertainty in estimated heat flux for example presented
 - Some analytical results (not presented) explain why volumetric heat capacity is dominant parameter
- Uncertainty analysis provides a road map on how to best reduce the overall uncertainty in estimated heat flux
 - Focus on those parameters with largest importance factors

Acknowledgements

The authors would like to thank the Test Resource Management Center (TRMC) Test and Evaluation/Science & Technology (T&E/S&T) Program for their support. This work is funded by the T&E/S&T Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation's (PEO STRI) contract number W900KK-08-C-0008.

